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Abstract. We report on the temperature dependence of the optical linear birefringence (LB)
of the mixed 2d Ising magnet K2CuxCo1−xF4. The temperature dependence of the Co–Co pair
contribution to the specific heat, proportional to that of the corresponding temperature derivative
of the LB, is deduced for samples over the whole range of concentration 0< x < 1. The
long-rangeλ-type anomaly has been shown to vanish forxc > 0.2, i.e. far below the percolation
limit xp = 0.5, a result which was predicted from calculations for 2d disordered Ising magnets,
but never checked experimentally.

1. Introduction

In recent years many theoretical and experimental works have been devoted to the study
of the thermodynamics and phase transitions of disordered magnetic systems. It is now
well established that sharp phase transitions are still present in magnetic and non-magnetic
impurity-doped magnets. As compared to the pure case, different critical exponents are
predicted for disordered compounds by the Harris criterion [1] if the specific heat critical
exponentα is positive. This criterion is inconclusive in the case of randomly dilute two-
dimensional (2d) Ising systems, for whichα = 0.

Only few experimental data have been reported so far on the thermodynamic properties
of disordered 2d Ising compounds [2–5] in spite of their interesting marginal behaviour.
The random-site [6] and random-bond [7] dilute 2d nearest-neighbour Ising models on
honeycomb or square lattices have been treated theoretically. These calculations and
simulations [8] reveal drastic changes of the specific heat with dilution but no experimental
proof of this particular behaviour has been reported so far.

In this paper, we report on the determination of the linear birefringence (LB), a quantity
related to the magnetic energyEm, and hence of the associated specific heatCm in the
random-exchange dilute 2d Ising quadratic and transparent antiferromagnet K2CuxCo1−xF4,
over the whole mixing range(0 < x < 1). The LB is defined as1n = nc − na, i.e. the
difference between the optical indices of refraction relative to the two principalc- and
a-axes of the crystal; the light is then propagating along the othera-axis. The magnetic
contribution to the LB, often much larger than that of the lattice, is found to be proportional
to Em either in pure [9] or in diamagnetically substituted transparent antiferromagnets [3,
10, 11].
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2. Experimental procedure

In real disordered materials, the critical divergence of the specific heat at the transition
temperature is always limited by macroscopic concentration fluctuations. An advantage
of the investigation of the magnetic energy via LB in disordered magnets comes from the
ability to perform measurements over a limited well defined small area of the sample, which
minimizes the contribution of concentration gradients. The effect of sample inhomogeneity
along thec-axis is reduced by placing a small pinhole in front of the sample. Moreover,
as a consequence of the growth process, the concentration is undoubtedly uniform over the
sample withinc-planes, i.e. along the light direction. In measurements, the temperature
inhomogeneity over the sample volume investigated is estimated to be less than 0.05 K.

K2CoF4 has a body-centred tetragonal structure, whereas for K2CuF4 this structure
is slightly distorted by a cooperative Jahn–Teller effect, providing an alternate elongation
of the F− octahedra surrounding the Cu2+ ions along the two principal axes in thec-
plane. K2CoF4 (TN = 107.85 K) is considered as the archetype of 2d Ising(S = 1/2)

antiferromagnets with a very weak interlayer exchange interaction(J ′/J = 10−6) while
the 2d (S = 1/2) ferromagnetism in K2CuF4 (Tc = 6.25 K) results from the alternate
arrangement of dz2−x2 and dz2−y2 ground-state orbitals. K2CuxCo1−xF4 forms a good solid
solution for all values ofx [12]. Down to xJT = 0.41, the cooperative Jahn–Teller
distortion of CuF6 octahedra is present, but forx < xJT a non-cooperative or dynamic Jahn–
Teller effect is still operative. Strong 2d magnetic frustration due to competing exchange
interactions strongly affects its(x, T ) magnetic phase diagram [12] as compared with that of
the site-diluted isomorphic compound K2MgxCo1−xF4. Evidence for even a spin-glass phase
at low temperature has been obtained for the intermediate 0.5 < x < 0.84 concentration
range, located between the disordered antiferromagnetic(x < xp = 0.5) and complex
ferromagnetic(x > xF = 0.84) phases. As revealed by static susceptibility measurements
[12], up toxF a strong anisotropy, parallel to thec-axis, still persists in mixed compounds.

Assuming a random-site distribution of Co and Cu spins over the lattice, one can express
the Ising Hamiltonian for a site-disordered system by

H = −2
∑
〈i,j〉

JijS
z
i S

z
j (1)

with a bound distribution probability

P(Jij ) = (1 − x)2δ(Jij − JCo−Co) + x(1 − x)δ(Jij − JAF
Cu−Co)

+ x(1 − x)δ(Jij − JF
Cu−Co) + x2δ(Jij − JCu−Cu) (2)

where JA−B represents the exchange coupling between A and B ions. The superscripts
AF and F distinguish the two kinds of antiferromagnetic and ferromagnetic Cu–Co bond,
respectively. The exchange interactions for symmetric pairs of ions have been determined
in the pure compounds:JCo−Co = −92 K andJCu−Cu = 11.2 K. Because of the lack of
precise information on theJ (AF orF)

Cu−Co exchange interactions in K2CuxCo1−xF4 we can only
assume thatJAF

Cu−Co + JF
Cu−Co < −55 ± 25 K, a rough estimate deduced from the high-

field magnetization data [13]. Both Co–Co and Cu–Co interactions are strongly Ising-like
in character [12, 14]. In conclusion, K2CuxCo1−xF4 can be considered as a nearly ideal
2d Ising(S = 1/2) disordered system on a square lattice with nearest-neighbour competing
interactions. As discussed below, it is better described by random-bond theories than by
more intuitive random-site models.

The antiferromagnetic order is not much perturbed under large fields; for example, our
SQUID magnetometer measurements demonstrate that the temperature dependence of the
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static magnetic susceptibility of K2Cu0.33Co0.67F4 is similar under small (1 Oe) and large
(11.8 kOe) [12] applied fields, as previously reported for Rb2Mg0.3Co0.7F4 [15].

As shown for K2CuxMn1−xF4 [16], the LB is not formally proportional to the magnetic
energy in compounds containing two types of magnetic ion. Assuming that the individual
magnetic contributions to the LB for each kind of pair(α), 1nm(α), are proportional to
individual magnetic energy termsEα

m [9], one may write for the total LB

1nm =
∑

α

1nm(α) =
∑

α

BαP (α)Eα
m (3)

where theP(α)s represent the different bonding probabilities (i.e.x2 for Cu–Cu pairs)
appearing in expression (2). TheBα-coefficients depend upon optical transition probabilities
and are functions of the photon energy considered. Thus, expression (3) differs from that
for the total magnetic energy:

Em =
∑

α

P (α)Eα
m. (4)

However, since the four main exchange integralsJα have significantly different absolute
values for in K2CuxCo1−xF4, one expects to distinguish the individual contributionsEα

m as a
function of temperature. As in the case of K2CuxMn1−xF4 [16] the thermal variation of each
individual d(1nm(α))/dT term can be assigned to the corresponding dEα

m/dT contribution
in the expression for the total specific heat.

A test of the homogeneity of our samples has been performed by chemical analyses on
several parts of each crystal. Thus we have estimated (table 1) their concentration gradient
over the optical cross section range studied, i.e. limited by a diaphragm 0.2 mm in diameter.
The experimental method used to measure the LB, as a function of temperature, has been
described previously in a paper on K2CuxZn1−xF4 [10].

3. Results and discussion

The temperature dependence of the LB in K2CuxCo1−xF4 samples having different
concentrations(0 < x < 1) is reported in figures 1(a) and 2(a). The curves can be
decomposed into two contributions: one coming from the lattice part1nl , the thermal
variation of which is assumed to follow a Debye law, and the other from the magnetic
part 1nm, related to individual variations of the magnetic energy for the different pairs of
magnetic ions (see expression (3)). As often verified [9], the lattice contribution to the
LB, due to the thermal variation of the lattice expansion and that of the electron–phonon
interaction, is weak as compared to the magnetic part.

Our LB data related to Co–Co pairs of ions are comparable to the results of calculations
of the magnetic energy in disordered 2d Ising systems by Monte Carlo simulations [8].
In usual magnetic specific heat measurements it is generally not possible to deduce the
Schottky anomaly in such disordered magnetic compounds because of the too-large lattice
contribution at high temperature; this is clearly exhibited for Rb2Co1−xMgxF4 [2]. Much
more efficient at high temperature, the lattice contribution to the LB changes sign from pure
K2CuF4 to K2CoF4; its magnitude varies monotonically on increasingx in K2CuxCo1−xF4

(figures 1(a) and 2(a)). This behaviour is closely related to the modification of the Jahn–
Teller distortion with disorder, as already discussed for K2CuxZn1−xF4 [10] compounds.
The magnetic contribution1nm(T , x) can be calculated from the expression

1nm(T , x) = 1n(T , x) − 1nl(T , x) (5)



5504 J P Jamet et al

Figure 1. The temperature dependence of the linear birefringence (a) and of the temperature
derivative of the birefringence (b) for K2CuxCo1−xF4 samples (smallx-values). The d(1n)/dT

curve is also shown for the pure K2CoF4 compound [18].

where 1n(T , x) is the measured birefringence. It is usually assumed that the lattice
contribution is proportional to1nl(T ) for the diamagnetic K2ZnF4 isomorphic compound
[10].

A family of d(1n)/dT curves have been deduced from the LB data for all concentrations
studied (figures 1(b) and 2(b)); the reported set of curves is close to the representation
of d(1nm)/dT ones, because of the negligible contribution of the lattice. As previously
discussed, the d(1nm)/dT temperature dependences for the pure K2CuF4 and K2CoF4

samples are similar to that of the magnetic specific heatCm(T ) for the 2d Heisenberg
(S = 1/2) ferromagnet and the 2d Ising(S = 1/2) antiferromagnet, respectively [10, 17,
18]. For the mixed compound K2CuxCo1−xF4, from expression (3), one can also write

d(1nm)/dT =
∑

α

BαP (α)Cα
m. (6)

For significantly differentJα-values, the individual magnetic specific heat anomalies,
related to different pairs of interacting magnetic ions, may be well separated from the
d(1nm)/dT temperature variation. The d(1nm)/dT (or specific heat) anomaly appearing
at high temperature is due to pairs of Co ions; it vanishes gradually asx increases, in
agreement with the probability of having Co–Co pairs (expression (2)) at the expense of
the low-temperature anomalies related to Cu–Cu and Cu–Co pairs of ions. Forx = 1,
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Figure 2. The temperature dependence of the linear birefringence (a) and of the temperature
derivative of the linear birefringence (b) of K2CuxCo1−xF4 (intermediate and largex-values).
The data are also reported for the pure K2CuF4 compound [9].

the specific anomaly due to ferromagnetically coupled Cu–Cu pairs is entirely recovered
[10, 16]; its disappearance, in the range of composition 0.31 < x < 0.58 (figure 2(b)),
is consistent with the vanishing of the cooperative Jahn–Teller effect atxJT = 0.41 [10,
12]. The d(1nm)/dT Schottky anomalies for Cu–Co pairs are not evident at the expected
temperatures; this is probably a result of too-weak coefficientsBCu−Co (expression (3)).

Onsager’s exact solution for the 2d Ising model predicts a huge divergence of the specific
heat anomaly atTN in agreement with the temperature dependence of d(1nm)/dT for pure
K2CoF4 (figure 1(b) and [17, 18]). A drastic decrease of the sharpCCo−Co

m λ-type anomaly
at small copper dilution is well revealed when comparing the data forx = 0.095 to the
pure K2CoF4 case. On increasing the Cu impurity content,TN is depressed, and more and
more entropy is transferred into the short-range-order term. The amplitude of theλ-peak
is found to decrease drastically with dilution very much faster thanx2, the scaling factor
of the Cu–Cu magnetic energy term (expression (2)). Then, this behaviour is much more
emphasized for our disordered 2d Ising compound than ind = 3 random-exchange Ising
magnets [11]. Even the long-range-order anomaly vanishes atx ∼ xc = 0.2 (figures 1(b)
and 2(b)); as soon asTN becomes smaller than|J/k| the long-range-order peak disappears
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completely at the expense of the broad Co–Co Schottky-type anomaly [19]. Such an effect
is also present in 3d Ising disordered compounds [11], but the criticalλ-type anomaly is
found to vanish only at the percolation threshold.

This experimental smearing of the transition atxc (figure 2(b)), far belowxp = 0.5, is
also evident from renormalization group calculations in a randomly bond-dilute 2d nearest-
neighbour Ising model on the square lattice [7] or from calculations on the honeycomb
lattice [6]. Note that these calculations, developed for dilute ferromagnets, are valid for
disordered 2d Ising antiferromagnets in zero field, as well [6]. Monte Carlo simulations [8]
on a site-dilute 2d Ising model strongly confirm this behaviour.

As pointed out and discussed by de Jongh [19] a strong similarity of behaviour is
expected between a 2d Ising disordered compound and a coupled system of magnetic chains
in a 2d infinite magnetic percolation cluster, for which the dependence of the specific heat on
interchain coupling has been calculated by Onsager. A dilute 2d system can be represented
by a network of 1d macrobonds which cross one another at nodes separated by a mean
characteristic lengthξp. As a consequence, forx > xc, the critical region becomes so
narrow that theλ-type sharp anomaly is no longer visible, so the temperature variation of
the specific heatCm(T ) is then well described only by a Schottky anomaly. As discussed for
the bond-dilute model [7], the dramatic critical-region narrowing nearx = xc is controlled
by the crossover exponentϕ from pure to random-exchange Ising models:

|tM(x)| = |T − TN(x)|
TN(x)

∼ x−1/ϕ. (7)

Table 1. The compositionx and concentration gradient1x for the K2CuxCo1−xF4 samples
studied, estimated over distances limited by a diaphragm, for weak values of dilution. The Néel
temperature, its dispersion1TN , and the ratio1TN/TN due to the concentration gradient are
also reported. The estimated upper value for the critical regiontM is calculated from [7] and
expression (7), giving|tM | = 10−1 at the lower dilutionx = 0.095.

x 1x (mm) TN 1TN 1TN/TN |tM |
0.095 <0.003 97.7 K ±0.036 K 3.7 × 10−4 10−1

0.130 <0.001 93.2 K ±0.012 K 1.3 × 10−4 4.4 × 10−2

0.177 <0.010 88.4 K ±0.12 K 1.4 × 10−3 1.4 × 10−2

Values of |tM(x)| are then calculated (table 1) using a typical value forϕ of 0.35
[7]. The disappearance of theλ-type anomaly does not mean a loss of long-range order;
magnetization or magnetic diffuse scattering measurements can probe it abovexc [12].

Another interpretation of the critical-region narrowing caused by disorder is also possible
from a theory developed recently for disordered 2d Ising systems [20]; a new intermediate
phase is expected to appear between the antiferromagnetic and the paramagnetic phases,
which breaks the usual logarithmic divergence of the specific heat below a reduced
temperaturetc which depends strongly upon mixing:

tc = |TC − TN |
TN

exp(−c1/g). (8)

The strength of the random-bond fluctuationsg increases markedly with the
impurity concentrationx; for example, for a mixed magnetic system one obtains
g = 0.34(1 − x)(1 − 2x)−2 [20]. Using this estimation forg and the constant value
c1 = 0.53, as determined in [20], we foundtc = 8 × 10−2, 6 × 10−3, 1.5 × 10−3 and
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2 × 10−5 for samples with compositionsx = 0.2, 0.177, 0.13 and 0.095, respectively. The
smearing of the critical region(t ∼ 10−1) clearly occurs down toxc ∼ 0.2.

Finite-size effects in computer simulations may cover the details of the critical properties.
For instance, estimations of these effects [20] indicate that the narrow intermediate phase
cannot be seen in systems studied in Monte Carlo simulations [21].

Up to now, the variation of the Schottky anomaly with dilution had never been tested
from direct specific heat measurements in 2d Ising disordered compounds [2]. From our
LB data (figure 2(b)) we checked that its magnitude scales withx2 (0.2 < x < 0.58), the
probability of finding two nearest-neighbour sites occupied by Co ions, in agreement with
expression (2). Forxc < x < xp the Schottky anomaly arises from clusters of coupled
2d Ising spins; it ought to be at its maximum at a temperatureTm = 0.83|JCo−Co|. Starting
from the experimental valueTm = 72 K, measured for the sample withx = 0.31, we
deduce|JCo−Co| = 89 ± 4 K, in good agreement with previous determinations of this
exchange integral. As is well known [19], at the Co–Co magnetic percolation threshold
(x ∼ xp = 0.5) the effective 1d Ising character of macrobonds gives rise to a broader
Schottky anomaly (figure 2(b)).

In K2CuxCo1−xF4 the variation of TN with x at small Cu dilution (table 1),
d(TN(x)/TN(0))/dx ∼ −1.20 ± 0.05, agrees well with its previous determination from
susceptibility measurements [12]. This system differs significantly from the dilute case
with diamagnetic ions, such as for K2MgxCo1−xF4, for which this quantity reaches−1.95
[2]. Our value is closer to results of calculations for random-bond 2d square lattices [22]. In
particular, this value of−1.20 can be determined for a random-bond system with only two
exchange integralsJ1 andJ2 with J1/J2 ∼ −0.1. The dilution at percolation,xp = 0.5, is
also much more consistent with the random-bond case, in contrast to the usual random-site
situation [19], for whichxp = 0.41.
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